3,363 research outputs found

    Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model

    Full text link
    Using a new analytic quantum mechanical method based on Slater's Xalpha method, we show that a fairly accurate estimate of the total energy of a molecule can be obtained from the exact energies of its constituent atoms. The mean absolute error in the total energies thus determined for the G2 set of 56 molecules is about 16 kcal/mol, comparable to or better than some popular pure and hybrid density functional models.Comment: 5 pages, REVTE

    Methods for evaluating the performance of volume phase holographic gratings for the VIRUS spectrograph array

    Full text link
    The Visible Integral Field Replicable Unit Spectrograph (VIRUS) is an array of at least 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET) to carry out the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic grating as its dispersing element that is used in first order for 350 nm to 550 nm. We discuss the test methods used to evaluate the performance of the prototype gratings, which have aided in modifying the fabrication prescription for achieving the specified batch diffraction efficiency required for HETDEX. In particular, we discuss tests in which we measure the diffraction efficiency at the nominal grating angle of incidence in VIRUS for all orders accessible to our test bench that are allowed by the grating equation. For select gratings, these tests have allowed us to account for > 90% of the incident light for wavelengths within the spectral coverage of VIRUS. The remaining light that is unaccounted for is likely being diffracted into reflective orders or being absorbed or scattered within the grating layer (for bluer wavelengths especially, the latter term may dominate the others). Finally, we discuss an apparatus that will be used to quickly verify the first order diffraction efficiency specification for the batch of at least 150 VIRUS production gratings.Comment: 18 pages, 11 figures. To be published in Proc. SPIE, 2012, "Ground-Based and Airborne Instrumentation for Astronomy IV", 8446-20

    Reducing the Risks: Reflections on Bridging Home and School Communication

    Get PDF
    Recent scholarship on literacy development has focused on studying young at-risk learners (Allen and Mason, 1989; Clay, 1982; Taylor and Dorsey-Gaines, 1988; Swap, 1990; Teale and Sulzby, 1986). As kindergarten and first grade teachers we worried about many of our students whose families were not in the cultural mainstream and whose literacy backgrounds appeared different from those of our more successful children. As we thought about how we might better teach our children we began to consider how we could improve our communication with the children\u27s parents to begin to build a partner ship between home and school literacy experiences. We wanted to be supportive and invitational with the parents. We hoped to provide the parents with information which they could use in helping their children interact with print, and, importantly, we wanted to learn from the parents. We valued their input and welcomed information that they could provide which would allow us to build our program to sup port the home. We wished to begin to build a two way bridge that would connect home and school literacy practice

    Evidence from K2 for rapid rotation in the descendant of an intermediate-mass star

    Get PDF
    Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 solar-mass main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The Astrophysical Journal Letter

    Fourier analyses of commensurability oscillations in Fibonacci lateral superlattices

    Full text link
    Magnetotransport measurements have been performed on Fibonacci lateral superlattices (FLSLs) -- two-dimensional electron gases subjected to a weak potential modulation arranged in the Fibonacci sequence, LSLLSLS..., with L/S=tau (the golden ratio). Complicated commensurability oscillation (CO) is observed, which can be accounted for as a superposition of a series of COs each arising from a sinusoidal modulation representing the characteristic length scale of one of the self-similar generations in the Fibonacci sequence. Individual CO components can be separated out from the magnetoresistance trace by performing a numerical Fourier band-pass filter. From the analysis of the amplitude of a single-component CO thus extracted, the magnitude of the corresponding Fourier component in the potential modulation can be evaluated. By examining all the Fourier contents observed in the magnetoresistance trace, the profile of the modulated potential seen by the electrons can be reconstructed with some remaining ambiguity about the interrelation of the phase between different components.Comment: 11 pages, 10 figures, added references in Introduction, minor revision

    Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature

    Full text link
    We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure

    Physical Interaction Between VIVID and White Collar Complex Regulates Photoadaptation in Neurospora

    Get PDF
    Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show that the level of interaction is correlated with the level of WCC repression in constant light and that even light-insensitive VVD is sufficient partly to regulate photoadaptation in vivo. We provide evidence that a functional GFP-VVD fusion protein accumulates in the nucleus on light induction but that nuclear localization of VVD does not require light. Constitutively expressed VVD alone is sufficient to change the dynamics of photoadaptation. Thus, our results demonstrate a direct molecular connection between two of the most essential light signaling components in Neurospora, VVD and WCC, illuminating a previously uncharacterized process for light-sensitive eukaryotic cells

    White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Linewidths: Kepler Observations of 27 Pulsating DA White Dwarfs Through K2 Campaign 8

    Get PDF
    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs, a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode linewidths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode linewidths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: We identify the spherical degree of 61 out of 154 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51-to-0.73-solar-mass white dwarfs, which evolved from 1.7-to-3.0-solar-mass ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://www.k2wd.org.Comment: 33 pages, 31 figures, 5 tables; accepted for publication in ApJS. All raw and reduced data are collected at http://www.k2wd.or
    corecore